
www.manaraa.com

Struct Multidisc Optim (2016) 53:1047–1067
DOI 10.1007/s00158-015-1377-y

RESEARCH PAPER

A level-set method for steady-state and transient natural
convection problems

Peter Coffin1 ·Kurt Maute1

Received: 9 June 2015 / Revised: 8 September 2015 / Accepted: 30 September 2015 / Published online: 15 December 2015
© Springer-Verlag Berlin Heidelberg 2015

Abstract This paper introduces a topology optimization
method for 2D and 3D, steady-state and transient heat trans-
fer problems that are dominated by natural convection in
the fluid phase and diffusion in the solid phase. The geom-
etry of the fluid-solid interface is described by an explicit
level set method which allows for both shape and topologi-
cal changes in the optimization process. The heat transfer in
the fluid is modeled by an advection-diffusion equation. The
fluid velocity is described by the incompressible Navier-
Stokes equations augmented by a Boussinesq approxima-
tion of the buoyancy forces. The temperature field in the
solid is predicted by a linear diffusion model. The governing
equations in both the fluid and solid phases are discretized
in space by a generalized formulation of the extended finite
element method which preserves the crisp geometry defi-
nition of the level set method. The interface conditions at
the fluid-solid boundary are enforced by Nitsche’s method.
The proposed method is studied for problems optimizing the
geometry of cooling devices. The numerical results demon-
strate the applicability of the proposed method for a wide
spectrum of problems. As the flow may exhibit dynamic
instabilities, transient phenomena need to be considered
when optimizing the geometry. However, the computational
burden increases significantly when the time evolution of
the flow fields needs to be resolved.
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1 Introduction

Natural convection is the transport of heat via fluid motion
driven by temperature dependent buoyancy forces. This
mode of energy transport plays an important role in
enclosed, sealed or vented systems, such as heat sinks and
cooling devices in electronic systems. Heat transfer by nat-
ural convection is an attractive concept as it does not require
additional mechanical devices, such as fans, and features
robustness and simplicity (Baı̈ri et al. 2014). As natural con-
vection is dominated by the interplay of fluid motion and
temperature evolution, the design of efficient heat transfer
systems is challenging. Design decisions involve selecting
a fluid with advantageous physical properties, placing heat
sources, and determining the geometry of the enclosure and
the internal structures, such as fins. This work presents a
computational design optimization method for finding the
geometry of thermal devices where the heat transport is
dominated by natural convection.

The majority of work on optimizing natural convection
systems has considered parametric geometry models with
few design variables. For example, Morrison (1992) opti-
mized the thickness and spacing of fins along with the
thickness of a back-plane. Bahadur and Bar-Cohen (2005)
treated the heat sink height and spacing of pin-fins as design
variables. For such particular device geometries, the thermal
performance can be approximated by either empirical rela-
tions or analytic models. To consider a larger design space
and to allow for conceptual design changes in the optimiza-
tion process, this work considers a topology optimization
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approach and predicts the thermal response of the system
by numerically solving a set of governing partial differential
equations.

Topology methods typically describe the geometry of a
body and the spatial arrangement of distinct materials within
a body via the spatial distribution of a fictitious material.
The volume fraction, or density, of the fictitious material
is defined as a continuous function of the optimization
variables, with the extrema representing distinct material
phases. Density-based topology optimization methods, such
as the SIMP (Solid Isotropic Material with Penalization)
method, interpolate material properties as functions of the
density to model geometry changes in the physics model.
These methods have been successfully applied to a broad
range of problems (Sigmund and Maute 2013; Deaton and
Grandhi 2014). However, as the optimization process con-
verges to material distributions with intermediate densities,
the geometry cannot be clearly identified and the physical
behavior is not correctly predicted. The latter issue affects in
particular problems where boundary layer phenomena play
an important role, such as flows at high Reynolds numbers
and convective heat transport. To mitigate these shortcom-
ings of density methods, Level Set Methods (LSMs) have
been introduced to topology optimization. Phase boundaries
are defined by the iso-contours of one or more level set
functions (LSFs) and the material phase is defined by the
signs of the LSFs. A recent review of LSMs in topology
optimization is provided by van Dijk et al. (2013). This
work considers a LSM for the design of natural convection
problems.

To overcome the limitations of empirical and analytical
models for convective heat transfer, engineers often describe
the heat transfer in the solid by a linear diffusion model
and approximate the heat flux at the fluid-solid interface
by Newton’s Law of Cooling (NLC) which assumes a con-
stant, typically design-independent temperature in the fluid.
This model has been used in topology optimization with
density methods, for example, by Yin and Ananthasuresh
(2002), Moon et al. (2004), Yoon and Kim (2005), Bruns
(2007), Iga et al. (2009), Seo (2009) and Alexandersen
(2011), and with LSMs by Yamada et al. (2011) and
Coffin and Maute (2015). To further improve the prediction
of the fluid temperature at the fluid-solid interface, the trans-
port of heat in the fluid by convection and diffusion needs be
considered. For low Mach number applications, where com-
pressibility effects in the fluid can be neglected, the fluid
temperature field is typically predicted by an advection-
diffusion model where the fluid is assumed incompressible
and described either by the Navier-Stokes or hydrodynamic
Boltzmann equations. For forced convection problems, this
class of models has been considered for topology optimiza-
tion with the density method, for example, by Yoon (2010),
Lee (2012), McConnell and Pingen (2012), Matsumori et al.

(2013), Kontoleontos et al. (2013) and Koga et al. (2013).
LSMs were studied for forced convection problems, for
example, by Marck et al. (2013), Makhija and Maute (2015)
and Yaji et al. (2015).

In contrast to forced convection problems, the work on
topology optimization for natural convection problems is
still in its infancy. Considering natural convection leads to a
two-way coupled problem where fluid and thermal fields are
interacting. Temperature dependent buoyancy forces drive
the flow which in turn alters the temperature field. As the
strength of the buoyancy forces and the flow velocities
increase, this interaction causes dynamic instabilities in the
flow. To date, Alexandersen et al. (2014) and Alexander-
sen (2015) presented the first and only studies of topol-
ogy optimization for natural convection design problems.
They adopted a density method and modeled the thermal
response by an advection-diffusion equation at steady-state
in two and three dimensions. The flow is described by the
incompressible Navier-Stokes equations with the Boussi-
nesq approximation of the buoyancy forces. The stick
condition at fluid-solid interface is enforced via Brinkman
penalization and the thermal conductivity is defined as a
function of the density. Alexandersen et al. (2014) studied
2D problems and observed convergence issues in the flow
analysis. This issue is likely due to the steady-state flow
model being not able to capture transient flow phenomena.
Furthermore, these authors found that intermediate densities
may yield large flow velocities and convective fluxes which
can be beneficial to the objective, making penalization of
intermediate material difficult. Alexandersen (2015) expand
this approach to 3D problems at steady-state.

The goal of this study is to mitigate the issues caused
by intermediate densities and to expand the work of
Alexandersen (2014) onto transient problems. Instead of
a density method, this work adopts an LSM to provide a
crisp representation of material boundaries. Traditionally
the level set function is updated via the solution of the
Hamilton-Jacobi equation; see, for example, Allaire et al.
(2002), Wang et al. (2003), Allaire et al. (2004) and Burger
and Osher (2005). Here, parameters of the discretized LSF
are defined by explicit functions of optimization variables
and the resulting optimization problem is solved by a non-
linear programming (NLP) method. This approach is often
referred to as explicit LSM and has been studied, for exam-
ple, by Wang and Wang (2006), Luo et al. (2007) and Pingen
et al. (2010). Explicit LSMs allow solving problems with
multiple constraints by standard NLP schemes.

To consider a broad range of natural convection prob-
lems, the flow and temperature fields are considered tran-
sient. As the appearance of unsteady phenomena depends
on the geometry, which changes in the optimization pro-
cess, assuming a steady-state response may not be valid
throughout the optimization process. Even if the flow and
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temperature fields of the initial and optimized design con-
verge to a steady-state response, designs emerging in the
optimization process may trigger unsteady phenomena,
leading to convergence issues in the forward analysis. This
work models natural convection problems with a transient
diffusion model in the solid phase and a transient advection-
diffusion model in the fluid phase in two and three dimen-
sions. The flow is described by the transient incompressible
Navier-Stokes equations augmented by buoyancy forces
modeled by the Boussinesq approximation. To preserve the
crispness of the level set geometry description in the cou-
pled model, the governing equations are discretized in space
by a generalized formulation of the extended finite ele-
ment method (XFEM). For an introduction to the XFEM
the reader is referred to Fries and Belytschko (2006) and
Khoei (2015). The XFEM bypasses the need to introduce
fictitious materials and allows enforcing the boundary con-
ditions directly at the fluid-solid interface. The thermal and
fluid fields are advanced in time by an implicit time step-
ping scheme. The unsteady system response is accounted
for in the formulation of the optimization and the compu-
tation of the design sensitivities. We will study the main
characteristics of this approach by numerical examples.

This work is proceeded by Coffin and Maute (2015)
where a simplified convection model based on NLC was
studied using the explicit LSM-XFEM. A key finding of
Coffin and Maute (2015) is that the NLC approximation
promotes unrealistically thin fluid channels, as the NLC
model over predicts the convective flux. This finding moti-
vates the present work where the temperature in the fluid
is resolved. The same explicit LSM-XFEM scheme has
been studied for a variety of physical models. Makhija and
Maute (2014) study fundamental issues using the XFEM in
level set topology optimization. Makhija and Maute (2015)
study forced convection using a hydrodynamic Boltzmann
transport model and Jenkins and Maute (2015) study fluid-
structure interaction problems.

The remainder of this paper is organized as follows: In
Section 2, the characteristics and the formulation of the opti-
mization problems considered in this study are described.
Section 3 presents two approaches for parameterizing and
discretizing the LSF. In Section 4, the natural convection
model is described, including the XFEM discretization, the
time stepping scheme, and the associated adjoint sensitivity
analysis. Numerical examples are studied in Section 5. The
insight gained from these studies are presented in Section 6.

2 The optimization problem

Natural convection problems feature a rich set of physical
phenomena which need to be accounted for in the formu-
lation of the optimization problem. In this section, we first

discuss approaches to characterize natural convection prob-
lems and then introduce the formulation of the optimization
problem considered in this study.

2.1 Natural convection design problems

The class of design problems considered in this work
assumes a solid body immersed in fluid. An external heat
flux is applied to the solid body and the fluid is enclosed by
walls which are either assumed adiabatic or at a prescribed
temperature. This configuration idealizes a broad range of
problems where natural convection plays an important role
for heat transfer; see Section 1.

The energy transport in the solid phase is due to diffusion
and in the fluid phase is due to both, diffusion and con-
vection. Diffusion is the process of heat transfer between
neighboring material and convection being the heat trans-
fer due to the motion of material. The Rayleigh number is
a non-dimensional parameter that characterizes the relative
strength of convective to conductive heat transport in natural
convection flows and is defined as:

Ra = |g|βF ΔT L3
c

νF αF

, αF = κF

ρF cp,F

(1)

where |g| is the magnitude of the gravitational acceleration
vector, βF the fluid thermal expansion coefficient, ΔT the
temperature difference between the fluid-solid interface and
the far-field fluid, Lc the characteristic length, and νF the
fluid kinematic viscosity. The fluid diffusivity, αF , is the
ratio of the fluid heat conductivity, κF , and the product of
fluid density, ρF , and specific heat capacity, cp,F . Large
Ra values describe configurations dominated by convective
energy transport.

For forced convection problems, the flow behavior is
typically characterized by the Reynolds number, Re, that
describes the ratio of inertial to viscous forces and is defined
as:

Re = vcLc

νF

, (2)

where vc is the characteristic fluid velocity, such as the free-
stream velocity or the fluid velocity at an inlet. In this work
the characteristic fluid velocity will be taken as the maxi-
mum in the domain, defining a maximum local Reynolds
number. The behavior of natural convection flows is better
characterized by the Grashof number that describes the ratio
of buoyancy to viscous forces and is defined as:

Gr = |g|βΔT L3
c

ν2
F

. (3)

Assuming temperature independent fluid properties, the
Rayleigh number increases with Grashof number. For low
Rayleigh and Grashof numbers and constant boundary
conditions, the flow converges to a steady-state. As the
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Rayleigh number exceeds a critical value, thermal instabil-
ities emerge and the flow exhibits an unsteady behavior.
One example is the flow in a cylinder, its axis aligned with
the gravity vector. Holding the top and bottom surfaces at
fixed (different) temperatures and assuming adiabatic side
walls, for an aspect ratio 1 the flow in the cylinder will
exhibit unsteady behavior beginning at Rayleigh numbers of
approximately 105 (Touihri et al. 1999).

The emergence of instabilities depends on the fluid prop-
erties, the boundary conditions, and the geometry of the
enclosure as well as internal structures. As the latter evolves
during the optimization process, the flow may become
unsteady for an intermediate design in the course of the opti-
mization process, while being steady for the initial design.
To consider design problems with a large range of Rayleigh
and Reynolds’ numbers, it is important to describe a poten-
tially unsteady flow behavior and consider the transient
response in the formulation of the optimization problem.

2.2 Formulation of design optimization problem

The design problems studied here have a state-dependent
objective, such as minimizing the temperature at a given
location in the design domain. As the state variables, i.e.
temperature, fluid velocity and fluid pressure, may vary in
time, the objective function is defined by an integral over a
given time period. The design constraints considered in this
work only depend on the LSF which is defined by an explicit
function of the optimization variables; see Section 3. These
constraints are used to regularize the optimization problem
and are defined in Section 5 for the particular problems stud-
ied here. This class of optimization problems can be written
as follows:

mins Z =
∫ t2

t1

z(s,u(t))dt,

s.t. gi(s) ≤ 0 i = 1 . . . Ng,

s ∈ S =
{
R

Ns |sL
i ≤ si ≤ sU

i , i = 1....Ns

}
, (4)

where the objective Z is the integral of the time dependent
function z over the time interval [t1, t2]. The instantaneous
function z depends on the vector of optimization variables s
and the vector of state variables u, which may vary in time,
t . The Ns optimization variables si are bounded by lower
and upper limits, sL

i and sU
i . The state variables satisfy

the governing equations of the natural convection problem
which is described in Section 4.1. The number of inequality
constraints is denoted by Ng .

3 Parametrization of level set function

The geometry of a solid body immersed in fluid is defined
by the LSF, φ(x), where x denotes the vector of spatial coor-
dinates. Assuming that the body consists of one solid phase,
a single LSF function is sufficient to describe the spatial
distribution of the fluid and solid phases as follows:

φ(x) < 0, ∀ x ∈ ΩS,

φ(x) > 0, ∀ x ∈ ΩF ,

φ(x) = 0, ∀ x ∈ ΓFS,

(5)

where ΩS is the solid phase, ΩF the fluid phase and ΓFS

the fluid-solid interface.
The level set function can be parametrized to describe

a combination of geometric primitives or to allow for the
evolution of geometries in the optimization process. Both
approaches are used in the numerical examples in Section 5
and described in the following subsections. In both cases,
the LSF is mapped onto the XFEM mesh by evaluating
the parametrized LSF at the nodes. Standard finite ele-
ment shape functions are used to interpolate the LSF value
at a point within an element. Here, bi-linear and tri-linear
shape functions are used for 2D and 3D problems, respec-
tively. These shape functions permit that an element edge
can be intersected by the fluid-solid interface, i.e. φ = 0,
at most once. The lines (2D) and faces (3D) spanned by the
edge intersection points, x�

i , define the fluid-solid interface
within a finite element; see Fig. 1. The phase, i.e. fluid or
solid, of the subdomains within the elements is determined
by the sign of the level set values of the associated finite ele-
ment nodes. To this end, we introduce an auxiliary level set
function φ̄ such that φ̄ = −1 in solid subdomains and φ̄ = 1
in fluid subdomains. To avoid numerical issues due to the
zero level set iso-contour intersecting finite element nodes,
nodal level set values that are close to zero, i.e. ‖φi‖ ≤
10−8 he, are set to φi = 10−8 he, where he is the size of
the finite element. Numerical experiments showed that the

Fig. 1 Construction of interface geometry for intersected elements
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influence of this perturbation on the optimization results is
imperceptible.

The linear interpolation scheme and the construction of
the interfaces restrict the geometry resolution of the LSF
to the size of a finite element and may cause convergence
issues in the optimization process if sub-element-size fea-
tures are advantageous. This issue has been discussed in
Jenkins and Maute (2015) and Coffin and Maute (2015). A
regularization scheme to discourage the formation of sub-
element-size features has been recently proposed by the
authors and is briefly outlined in Section 3.3.

3.1 Petal geometry

To gain insight into the fundamental characteristics of the
class of natural convection problems studied here, we first
restrict the set of 2D geometries that can emerge in the opti-
mization process. To this end, we parametrize the LSF such
that it describes a radial arrangement of petal-like features.
A configuration with three petals is depicted in Fig. 2. The
petals are evenly spaced around a semicircle of radius h̃b.
The total petal length is defined by h̃t and the petal width
by w̃p, which varies sinusoidally in radial direction with an
amplitude ã. These parameters, i.e. h̃b, h̃t , w̃p, and ã, can
be defined as the optimization variables, si , for either each
petal individually or uniformly for a group of petals. Note
that the petal geometry is defined in non-dimensional form
with the height of the design domain being the reference
length, i.e. x = Lcx̃, where ·̃ denotes a non-dimensional
parameter.

The petal configuration is defined by the superposition
of multiple LSFs, describing the individual petals and the
circular base. Each petal is defined in a local coordinate
system, x̃′, that is aligned with the symmetry axis of the
petal. The level set value, φ(x̃), is defined as:

φi(x̃) = minKS(φc(x̃), φp,j (x̃)), (6)

Fig. 2 Configuration of petal design with three petals

where φp,j is the LSF of the j -th petal and φc describes the
circular base as:

φc =
√

x̃2 + ỹ2 − h̃b. (7)

The Kreisselmeier-Steinhauser function, minKS , is used
to approximate the minimum level set value, φi , ensur-
ing the differentiability of the formulation with respect to
the petal parameters (Kreisselmeier and Steinhauser 1979).
This function is defined as:

minKS(φ) = −1

β
ln

⎛
⎝NLS∑

k=1

e−βφk

⎞
⎠ , (8)

where the minimum level set value of a set of NLS values
is computed with a sharpness parameter, β. The j -th petal
is described by φp,j which defines a cuboid with curved
edges:

φp,j =
([

2x̃x h̃b

w̃w

]p

+
[

ỹy h̃b

h̃p

]p) 1
p

. (9)

The sharpness of the corners is controlled by the param-
eter p and set to 10 in this study. The petal length, h̃p, is
defined as:

h̃p = h̃t − h̃b. (10)

The width of the cuboid, w̃w, varies in radial direction,
i.e. ỹ′, as follows:

w̃w = w̃′
p + π

Np − 1

(
ỹ′ − h̃b

)
. (11)

Note that the maximum width depends on the number of
petals Np. The axillary coordinates x̃x and ỹy introduced in
(9) are defined as functions of the local coordinates x̃′ and
ỹ′:

x̃x = x̃′ − sign
(−x̃′) ã w̃w sin

(
3

2
π

1

h̃p

(
ỹ′ − h̃b

))
,(12)

ỹy = ỹ′ − h̃b. (13)

The sine function in (12) defines the curvature of the cuboid
edges.

3.2 Topology optimization

To allow for the emergence of a larger set of geometries in
the optimization process, the LSF is parametrized by local
shape functions defined on a finite element mesh. While this
mesh may differ from the XFEM mesh to predict the tem-
perature and flow fields, for simplicity we use the XFEM
mesh for parameterizing the LSF in this study.
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We assign one optimization variable, si, i = 1 . . . Nn to
each node of the XFEM mesh, where Nn is the number of
nodes. The LSF value of the i-th node, φi , is defined by an
explicit function of the optimization variables as follows:

φi =
⎛
⎝ Nn∑

j=1

wij

⎞
⎠

−1
Nn∑
j=1

wij sj , (14)

where

wij = max
(
0, (rf − |xi − xj |)

)
, (15)

and rf is the prescribed filter radius. The filter (14) accel-
erates the convergence of geometry in the optimization
process and may promote (but does not guarantee) smooth
shapes of the phase boundaries; see, for example, Kreissl
and Maute (2012). Numerical experiments have shown that
filter radii of 2.0 − 4.0 times the element width to yield an
effective and efficient smoothing of nodal design variables.
Within this range the optimization results do not depend
noticeably on choice of rf .

3.3 Feature size control

To discourage the formation of small, sub-element-size fea-
tures and to control the slope of the LSF near the fluid-solid
interface, we introduce the following measure of the spatial
LSF gradients:

G =
∫

e−α2 (|∇φ| − dφp

)2
dΩ with α = ep

φ

Δφ
, (16)

where ep is the penalization parameter, dφp the desired
level set gradient, and Δφ the range of the level values in
the design domain, defined as:

Δφ = φmax − φmin. (17)

The gradient measure (16) consists of two terms: The
first term becomes vanishingly small far from the zero level
set contour and unity nearby; the second term is zero when
the level set gradient is equal to the desired value. The com-
bination of these two terms penalizes level set gradients
that do not match the desired value, dφp, along the fluid-
solid interface. The value of dφp is typically set to unity to
promote uniformly scaled shape sensitives along the phase
boundaries; see, for example, Burger and Osher (2005) and
van Dijk et al. (2013). This functionality of the gradient
measure is similar to the one of re-initialization schemes
often used in traditional LSMs, which advance the design
via the solution of the Hamilton-Jacobi equation.

The authors have recently shown that the gradient mea-
sure (16) can be also used to discourage the formation
of sub-element-size featured when combined with properly
selected upper and lower bounds on the optimization vari-
ables (Coffin and Maute 2015). This concept is illustrated in
Fig. 3. Restricting the level set values to ±hele/2, where hele

Fig. 3 LSF gradient measure concept, dotted line showing insufficient
gradient

is the element size, the minimum feature size is hele if the
gradient of the LSF is one. The reader is referred to Coffin
and Maute (2015) for further details. In Section 5, an upper
limit on the gradient measure (16) is imposed to regularize
the optimization problems.

4 Analysis

The main challenge in optimizing the topology of natural
convection problems is the modeling and numerical pre-
diction of the temperature and flow fields. In this section,
we present the weak form of the governing equations, out-
line the spatial and temporal discretization schemes, and
summarize the main steps of the adjoint sensitivity analysis.

4.1 Governing equations

In this study, we describe natural convection flows by cou-
pling an advection-diffusion equation, which describes the
transport of thermal energy, and the incompressible Navier-
Stokes equations, which describe the transport of mass
and momentum. The buoyancy forces are modeled by the
Boussinesq approximation. While this fluid model is only
valid for low Mach number flows, it describes well a broad
range of problems relevant for engineering design. The heat
transfer in the solid phase is described by a linear diffusion
model. Fluid and solid models are coupled at the fluid-solid
interface through temperature and heat flux continuity con-
ditions. The residual weak form of the governing equations
in the fluid and solid phases are summarized subsequently.

4.1.1 Incompressible Navier-Stokes equations

The residual of the weak form of the incompressible Navier-
Stokes equations, RF , is decomposed into volumetric and
surface contributions:

RF = RF
Ω + RF

stab + RF
Γext

+ RF
�FS

= 0, (18)
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where RF
Ω and RF

stab are the residuals of the volumetric non-
stabilized and stabilized contributions, RF

Γext
is the residual

of contribution from external boundaries, and RF
�FS

is the
residual of the fluid-solid interface conditions. The stabi-
lization term, RF

stab, depends on the discretization scheme
and is defined in Section 4.2. For the problems considered in
this study, the contributions form external boundaries van-
ish as the fluid velocities are set to zero along the walls
enclosing the flow domain.

The non-stabilized volumetric contributions are:

RF
Ω =

∫
ΩF

ΨiρF

(
∂vi

∂t
+ vj

∂vi

∂xj

)
dΩ

+
∫

ΩF

1

2

(
∂Ψi

∂xj

+ ∂Ψj

∂xi

)
σij (v, p) dΩ

+
∫

ΩF

ΨiρF gi (1 − βF [TF − T0]) dΩ

+
∫

ΩF

η
∂vi

∂xi

dΩ, (19)

where vi is the velocity vector, p the pressure, TF the tem-
perature, and σij the stress tensor of the fluid. The vector Ψi

denotes admissible test functions for the momentum equa-
tions, and η is the test function of the incompressibility
condition. The gravity acceleration vector is denoted by gi

and T0 is the reference temperature. In this form the refer-
ence temperature drives the magnitude of buoyancy force
through the entire domain. In a closed box, the magnitude
of reference temperature will lead to changes in the magni-
tude of mean pressure in the domain and will not impact the
fluid flow velocities. The fluid stress is defined as:

σij (v, p) = −pδij + μ

(
∂vi

∂xj

+ ∂vj

∂xi

)
, (20)

where μ is the dynamic viscosity of the fluid.
We enforce weakly the stick condition at the fluid-solid

interface by a Nitsche’s method (Nitsche 1975). The formu-
lation adopted here is described by Schott et al. (2014) and
is written as:

RF
ΓFS

= −
∫

ΓFS

Ψi σij (v, p) nF
j dΓ

−
∫

ΓFS

σij (�, η)vi nF
j dΓ

+γF

∫
�FS

Ψi vi dΓ , (21)

where nF
j is the normal on the interface pointing into the

solid phase and γ F is a penalty parameter.

4.1.2 Advection-diffusion equation

The energy transport in the fluid phase is described by an
advection-diffusion equation. Setting the advective veloc-
ity to zero, this equation simplifies to a diffusion equation
which is used to model the conduction in the solid phase.
Similar to the Navier-Stokes equations discussed previously,
the weak form of the advection-diffusion equation is decom-
posed into volumetric and surface contributions as follows:

RTP = R
TP

Ω + R
TP

stab + R
TP

Γext
+ R

TP

ΓFS
= 0, (22)

where P denotes the phase, i.e. fluid or solid. The stabilized
volumetric contribution, R

TP

stab, is discussed in Section 4.2.

The non-stabilized volumetric contribution, R
TP

� , is:

R
TP

Ω =
∫

ΩP

ζP ρP cp,P

(
∂TP

∂t
+ vP

j

∂TP

∂xj

)
dΩ

+
∫

ΩP

∂ζP

∂xi

J P
i (TP ) dΩ, (23)

where ζP is an admissible test function and JP
i the diffusive

heat flux. Note the advective velocity vP
i is the fluid velocity

vi in Ωk = ΩF and vanishes in the solid phase. Assuming
isotropic diffusion in both fluid and solid phase, the heat
flux is:

JP
i (TP ) = κP

∂TP

∂xi

. (24)

The contribution from the external boundaries, R
TP

Γext
, is

due to applied heat surface fluxes and is defined as:

R
TP

Γext
=

∫
Γ

q
P

ζP qP dΓ , (25)

where Γ
q
P denotes the surface of phase P at which the

surface flux qP is applied.
The continuity of the temperature field and the sur-

face fluxes at the fluid-solid interface is enforced weakly
using Nitsche’s method. Following the work of Dolbow and
Harari (2009), the surface contributions R

TF

�FS
and R

TS

�FS
are

defined through the following integrals:

R
TF

�FS
+ R

TS

�FS
= −

∫
ΓFS

〈ζ 〉 {Ji (TF , TS)} nF
i dΓ

−
∫

ΓFS

{Ji (ζF , ζS)} nF
i 〈T 〉 dΓ

+γT

∫
ΓFS

〈ζ 〉 〈T 〉 dΓ , (26)

with

〈z〉=zF −zS and {Ji (zF , zS)}=wF JF
i (zF )+wSJS

i (zS),

(27)

where γT is a penalty parameter and wF and wS are weights
such that wF + wS = 1.
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4.2 Spatial discretization

The governing equations in the fluid and solid phase
are discretized in space by the XFEM. The XFEM aug-
ments the standard finite element interpolation by additional
enrichment functions to capture discontinuities in either the
state variables or their spatial gradients within an element.
Depending on the type of discontinuity, different enrich-
ment schemes are applied (Fries and Belytschko 2010).
The particular approach used in this study is adopted from
Makhija and Maute (2014), Kreissl and Maute (2012), Lang
et al. (2014), Makhija and Maute (2015), who considered
linear elastic, incompressible Navier-Stokes, diffusion, and
advection-diffusion problems, respectively.

The XFEM is used to approximate the fluid velocity and
pressure fields as well as the temperature fields in the solid
and fluid phases within finite elements that are intersected
by the fluid-solid interface, i.e. the zero level set iso-contour.
With u representing one of these state variables, a Heavi-
side enrichment strategy is used to discretize the governing
equations. The approximation of u within an element, û, is
defined as:

û(x) =
M∑

m=1

(
H(−φ̄(x))

∑
i∈I

Ni(x) δ
i,F
mk uF

i,m

+H(φ̄(x))
∑
i∈I

Ni(x) δi,S
mn uS

i,m

)
(28)

where I is the set of all elemental nodes, Ni(x) the nodal
basis functions, M the number of enrichment levels, and
uF

i,m and uS
i,m are the degrees of freedom of enrichment level

m at node i in the fluid and solid phases, respectively. To
satisfy the partition of unity principle, no more than one
degree of freedom per node is used to interpolate the solu-
tion at a point in the element. The active degrees of freedom
at the i-th node are denoted by k and n in fluid and solid
phases, respectively, and δ

i,P
ab for P = [F, S] is the Kro-

necker delta. The Heaviside function, H(z), turns on and off
the interpolation for the particular phase and is defined as:

H(z) =
{

1 z > 0
0 z ≤ 0

. (29)

For each phase, multiple enrichment levels, i.e. sets of
shape functions, may be necessary to interpolate the state
variables in multiple, physically disconnected regions of the
same phase; see Makhija and Maute (2014), Terada et al.
(2003), and Tran et al. (2011). This generalization pre-
vents spurious coupling between disconnected regions of
the same phase. The reader is referred to Makhija and Maute
(2014) for details of the particular approach used here. To
accurately integrate the weak form of the static equilib-
rium equations by Gauss quadrature, intersected elements
are decomposed into triangles in 2D and tetrahedrons in 3D.

The convective terms in the incompressible Navier-
Stokes and advection-diffusion equations may cause spu-
rious node-to-node velocity oscillations. Furthermore, we
interpolate both the fluid velocity and pressure by bi-linear
shape functions in 2D and tri-linear shape functions in
3D. This equal-order interpolation gives rise to spurious
pressure oscillations. To prevent these numerical instabili-
ties, we augment the incompressible Navier-Stokes by the
Streamline Upwind Petrov Galerkin (SUPG) and Pressure
Stabilized Petrov Galerkin (PSPG) stabilization (Tezduyar
et al. 1992), yielding the following volumetric contribution
to (18):

RF
stab =

∑NF
e

e=1

∫
ΩF,e

(
τv
SUPG vj

∂Ψi

∂xj

+ 1

ρF

τPSPG

∂η

∂xi

)

(
ρF

(
∂vi

∂t
+ vj

∂vi

∂xj

)
− ∂σij (v, p)

∂xj

+ρF gi (1 − βF [TF − T0])
)

dΩ, (30)

where NF
e denotes the number of elements in the fluid

phase. The stabilization parameters τv
SUPG and τPSPG are

given by Tezduyar et al. (1992). The advection-diffusion
equation in the fluid phase is stabilized by the following
SUPG term:

R
TF

stab =
NF

e∑
e=1

∫
ΩF,e

τ T
SUPG

ρF cp,F

vi

∂ζ

∂xi

×
(

ρF cp,F

(
∂TF

∂t
+ vi

∂TF

∂xi

)
− ∂JF

i

∂xi

)
dΩ, (31)

where the stabilization parameter τT
SUPG is defined in

Franca et al. (1992).

4.3 Time integration scheme

The XFEM discretization yields the following semi-discrete
form of the governing equations:

Ru(u, u̇) = 0, (32)

where the vector u collects the degrees of freedom of the
fluid velocity, pressure, and temperature fields, as well as
the temperature field in the solid; its time derivative is
denoted by u̇. We discretize the governing equations in time
by an implicit Euler backward scheme:

u̇(n) = u(n) − u(n−1)

Δt(n)
, n = 1 . . . Nt , (33)

where n is the time index, Δt(n) the time step size, and Nt

the number of time steps.
At time step n = 0, the initial conditions, u0, are satisfied

for all state variables such that:

R(0)
u = u(0) − u0. (34)
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For all time steps n > 0, the equilibrium at the time step
(n) is satisfied by solving the nonlinear system R(n)

u = 0
via Newton’s method. To this end the system is linearized at
u(n), yielding the following contributions to the Jacobian:

J(n)

u(n) = ∂R(n)
u

∂u(n)

∣∣∣∣∣
u(n)

+ ∂R(n)
u

∂u̇(n)

∣∣∣∣∣
u(n)

1

Δt(n)
(35)

Note that due to the SUPG and PSPG stabilization terms,
the second term in the above equation depends on the solu-
tion u(n). We compute the derivatives in (35) based on the
analytically differentiated finite element formulations.

4.4 Sensitivity analysis

The objective functions considered in this study can be
written in discretized form as:

Z =
N2

t∑
n=N1

t

z(n)
(
s,u(n)

)
, (36)

where the time steps N1
t and N2

t correspond to the times
interval [t1, t2] defined in (4). The derivatives of the objec-
tive function with respect to the optimization variables are
computed by the adjoint method. To this end, we adopt the
discrete formulation for nonlinear fluid and coupled systems
of Kreissl and Maute (2011) and Golmon et al. (2012). The
main steps of the computational procedure are summarized
subsequently.

The derivative of the objective function with respect to
the optimization variable si is decomposed into an explicit
and an implicit term such that:

dZ

dsi
= ∂Z

∂si
+

N2
t∑

n=N1
t

∂z(n)

∂u(n)

T
∂u(n)

∂si
. (37)

The explicit term is evaluated by differentiating Z first
with respect to the nodal level set values, φj . For conve-
nience these derivatives are evaluated by finite differences.
The resulting vector, (∂Z/∂φj ), is then post-multiplied by
the derivative of the nodal level set values with respect
to the optimization variables, (∂φj /∂si), differentiating the
explicit expressions introduced in Sections 3.1 and 3.2.
The same procedure is used to compute the derivatives of
the constraints in (4), as they do not depend on the state
variables in this study.

The implicit term in (37) is computed by the adjoint
method as follows:

N2
t∑

n=N1
t

∂z(n)

∂u(n)

T
∂u(n)

∂si
=

N2
t∑

n=0

λ(n)T ∂R(n)
u

∂si
, (38)

where λ(n) are the adjoint states at time step n. Note that the
scalar product of the adjoint vector and the derivative of the

residual R(n)
u is summed from the initial time step through

n = N2
t . The adjoint state are computed by integrating the

adjoint equations backward in time as follows:

(
J(n)

u(n)

)T

λ(n) = − ∂z(n)

∂u(n)

+ 1

Δt(n+1)

∂R(n+1)
u

∂u̇(n+1)

∣∣∣∣∣ T
u(n+1)λ

(n+1), (39)

for n = N2
t . . . 0 and λ(N2

t +1) = 0. In this work, we compute
the derivative of the objective function components with
respect to the state variables, ∂z(n)/∂u(n), analytically. The
derivatives of the residual with respect to the design vari-
ables, ∂R(n)

u /∂si , are computed by finite difference. Note
that only the residuals of intersected elements need to be
considered as the derivatives of non-intersected elements
vanish.

The differentiation of the residual of intersected elements
with respect to the optimization variables deserves particu-
lar attention. The derivative of an elemental residual, Rn

e , at
time step n can be conveniently decomposed as follows:

∂Rn
e

∂si
=

Ne
n∑

j=1

NΓ
n∑

k=1

∂Rn
e

∂xΓ
k

∂xΓ
k

∂φj

∂φj

∂si
, (40)

where Ne
n is the number of nodes and NΓ

n the number of
intersection points per element. The first term in the double
sum of (40) describes the change of the elemental residual
due to a change in the interface geometry which is defined
by the position, xΓ

k , of the intersection points along the ele-
ment edges; see Section 3. The second term represents the
dependence of xΓ

k on the level set value, φj , at the finite ele-
ment nodes. The last term captures the explicit dependence
of φj on the optimization variables. The decomposition (40)
illustrates clearly that the proposed LSM essentially uses
shape derivatives to update the design in the optimization
process.

Assuming that φj (si) is smooth, the partial derivatives in
(40) exist for all values of si , except for φj = 0. In this
case, for an infinitesimal perturbation of φj , edge intersec-
tion points may emerge or vanish and a subset of degrees
for freedom, uP

i,m with P = [F, S], may become active or

inactive, as defined by the Kronecker delta, δ
i,P
ab , in (28). To

mitigate these issues, we construct the nodal level set values
such that ‖φj‖ > 0; see Section 3. Furthermore, we eval-
uate the derivative

(
∂Rn

e /∂xΓ
k · ∂xΓ

k /∂φj

)
in the direction

which does not alter the sign of φj . In this work, we com-
pute

(
∂Rn

e /∂xΓ
k · ∂xΓ

k /∂φj

)
by a finite difference method.

If the sign of a nodal level set value does change due to
perturbation ±Δφj , a central difference scheme is chosen;
otherwise a forward or backward difference scheme is used,
depending on the perturbation direction that does not yield
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Fig. 4 Configurations of the
design problem in a two and b
three dimensions

a sign change. Numerical studies for a broad range of prob-
lems rendered this finite differencing approach sufficiently
accurate and computationally efficient.

5 Example problems

In this work we study the characteristics of the proposed
LSM approach for steady-state problems in 2D and 3D. A
transient problem is studied in 2D only due to constraints on
computational resources.

The configurations of the 2D and 3D design problems are
shown in Fig. 4. In 2D the design domain is a rectangle of
width w and height h. In 3D a cylinder of diameter w and
height h forms the design domain. In both configurations,
a heat flux qB is applied at point B which is guaranteed to
be surrounded by a sphere of solid phase with radius rBS .
The temperature on the top surface of the design domains
is fixed to T0. The side and bottom walls are adiabatic. The
fluid velocity at the walls and the fluid-solid interface is
zero. We assume the properties of air for the fluid phase
and the ones of aluminum for the solid phase. The mate-
rial parameters are summarized in Table 1. The magnitude
of the heat flux and the dimensions of the design domains
are varied to yield either a steady-state or transient flow
response.

The goal of the design problem is to find the geometry
of an internal solid structure such that the average temper-
ature at point B, TB , within the time [t1, t2] is minimum.
To prevent the trivial solution of an all solid design domain,
the volume of the solid phase, VS , is constrained to be less
than or equal to a maximum volume, cv . To promote smooth

shapes and to discourage the formation of small geomet-
ric features, we impose a constrained on the perimeter, with
cpe denoting the maximum feasible perimeter. To suppress
the formation of sub-element-size features, we also impose
a constraint on the level set gradient measure described in
Section 3.3, with cg being the upper limit. This optimization
problem can be written as follows:

mins Z = 1

N12
t

∑N2
t

n=N1
t

T
(n)
B ,

s.t. VS − cv ≤ 0

P − cpe ≤ 0

G − cg ≤ 0

s ∈ S =
{
R

Ns |sL
i ≤ si ≤ sU

i , i = 1....Ns

}
, (41)

Table 1 Material properties for example problems

Property Value

Gravity g = 9.81 m

s2

Volumetric thermal expansion αT E = 3.43 × 10−3 1
K

Fluid dynamic viscosity μF = 1.511 × 10−5Pa · s

Fluid density ρF = 1.205 kg

m3

Fluid specific heat cp,F = 1005.0 J
kgK

Fluid diffusivity κF = 0.0257 W
mK

Solid density ρS = 2700.0 kg

m3

Solid specific heat cp,S = 910.0 J
kgK

Solid diffusivity κS = 237.0 W
mK

Reference temperature T0 = 1.0K
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where N12
t = N2

t − N1
t is the number of time steps in the

time interval of interest. For steady-state problems, N12
t =

1. Numerical studies have shown that the constraint on the
gradient measure is only needed for the 3D problem con-
sidered here. Therefore, this constraint is omitted for the 2D
problems.

The design domains are discretized in space by bilinear
quadrilateral elements (2D) and hexahedral, trilinear ele-
ments (3D). To enforce the stick condition at the fluid-solid
interface we set the fluid penalty parameter to γF = 104;
see (21). To enforce the temperature continuity the temper-
ature penalty parameter is set to γT = 100.0 and the flux
averaging weights to wS = wF = 0.5; see (26) and (27).
For the transient case, the flow and temperature fields are
advanced in time by an implicit Euler backward scheme;
see Section 4.3. The resulting systems of nonlinear resid-
ual equations are solved by a damped Newton-Raphson
method. The linear sub-problems of both the forward and
the sensitivity analysis are solved by either a sequential or
parallel direct solvers, depending on the problem size. We
use UMFPACK for 2D problems and MUMPS for the 3D
problem (Davis 2004; Amestoy et al. 1998).

The Globally Convergent Method of Moving Asymptotes
(GCMMA) of Svanberg (2002) is used to solve the opti-
mization problem. The GCMMA parameters are: relative
step size, 0.01; minimum asymptote adaptivity, 0.5; initial
asymptote adaptivity, 0.7; maximum adaptivity, 1.43; and
constraint penalty, 50. The optimization problem is con-
sidered converged if the change of the objective function
relative to the initial objective value is less than 10−6 and
the constraints are satisfied.

The numerical studies presented in the remainder of this
section are organized as follows: First we study a steady-
state configuration in 2D, restricting the design freedom
to a petal geometry. This study illustrates the influence of
imposing symmetry conditions on the design. The same
configuration is considered with a finite element discretiza-
tion of the level set function, illustrating the influence of
the increased design freedom and the choice of the ini-
tial design. A 2D configuration yielding unsteady flow is
then considered to understand the influence of a sup-critical
Grashof number on the resulting design geometry. Finally,
a 3D steady state design problem is considered.

To characterize the flow and temperature fields of the ini-
tial and optimized designs, we report on the Rayleigh and
Grashof numbers as well as on the maximum local Reynolds
number. The domain height is used as the characteristic
length, Lc; the maximum difference between the tempera-
ture at the top surface and at point B, i.e. TB − T0, over all
time steps is used as characteristic temperature difference,
ΔT . The local Reynolds number is computed with respect
to the maximum local fluid velocity, i.e. vc = maxΩF

|v|.

Fig. 5 Initial design for 2D petal geometry optimization

5.1 2D petal geometry optimization

First, we restrict the design freedom to the petal geometry
described in Section 3.1 and perform parametric optimiza-
tion to understand the main characteristics of the design
problem. In particular, we study the influence of imposing
symmetry conditions on the design. To this end, we con-
sider three variations of a 5-petal layout. In option O1, we
enforce the same geometry for each individual petal yield-
ing a total of four optimization variables: h̃b, h̃t , w̃p and ã.
For option O2, we only enforce symmetry about the verti-
cal axis. Using a uniform base height for all petals, option
O2 yields 1 + 3 × 3 optimization variables. Finally, in
option O3, each petal is allowed a unique geometry, yield-
ing 1 + 5 × 3 optimization variables. The initial design for
all configurations is shown in Fig. 5. The initial values and
the upper and lower bounds of the design parameters are
given in Table 2. Note that these bounds allow the petals to
overlap and thus the topology to change in the optimization
process.

Table 2 Initial values and bounds of design parameters for 2D petal
geometry optimization

Parameter Initial Minimum Maximum

Base length, h̃b 0.21 0.15 0.25

Total length, h̃t 0.31 0.0 0.9

Petal width, w̃p 0.21 0.0 0.9

Side variation, ã 0.0 −0.4 0.4
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Table 3 2D optimization parameters

Parameter Value

Domain height h = 0.030 m

Domain width w = 0.030 m

Number of elements 80 × 80 = 6400

Heat flux qB = 5.000 × 10−2W

Volume constraint cv = 3.93 × 10−5 m3

Perimeter constraint cpe = 3.14 × 10−2 m2

The dimension of the design domain and the magnitude
of the heat flux is chosen such that a stable steady-solution
of the natural convection problem exists throughout the opti-
mization process. At the initial design, the Rayleigh number
is Ra = 6, 050, the Grashof number Gr = 10, 200, the
maximum local Reynolds number Remax = 10.0. The
problem parameters are summarized in Table 3.

Temperature contour plots with stream lines of the final
designs of the three options O1-3 are shown in Fig. 6. The
temperatures at point B, the volume, and the perimeter of
the optimized designs are given in Table 4. The diffusive and
convective contribution to the total heat transport are shown
in Fig. 7. The diffusive flux, J diff , in the fluid domain is
defined as:

J
diff
i = −κF

∂T

∂xi

, (42)

while the advective flux, qadv , is defined as:

J adv
i = cp,F ρF ΔT vi, (43)

where ΔT is the difference between the local, T , and
reference, T0, temperatures.

Since the convective flux increases with the area of the
fluid-solid interface, the perimeter of all designs is either

equal or close to the maximum feasible value. Similarly,
the designs take up (almost) all of the allowable solid vol-
ume in order to extend the solid phase toward the cold
top surface. As expected, the objective improves, i.e. the
temperature TB decreases, with increasing design freedom.
Option O3 takes advantage of the design freedom and yields
an asymmetric design, although the setup of the design
problem is symmetric. Comparing the heat flux contribu-
tions of the optimized designs suggests that the asymmet-
ric design solution increases in particular the convective
energy transport. The differences in convective flux are also
reflected in the differences in the flow velocities shown
in Fig. 8. As the Rayleigh number of the problem is low-
ered the benefits from an asymmetric design decrease and
the optimization process converges to a symmetric design.
This tendency was observed when lowering the product
(ρF cp,F ) by a factor 1000.0; the results of this study are
not shown here as they do not provide fundamentally new
insights.

5.2 2D steady-state topology optimization

We consider the same steady-state configuration of
Section 5.1 but now study a finite element parameteriza-
tion of the level set function; see Section 3.2. We compare
the optimization results for a symmetric and non-symmetric
problem setup. To study the influence of the initial design
on the optimization results, we consider the two initializa-
tions of the level set function shown in Fig. 9: one consisting
of a simple half-circle of radius 0.005, the second imposing
a grid of cuboid fluid inclusions over the same solid circle.

The problems parameters are given in Table 3. The radius
of the circle of solid phase around point B is rBS = 10−3 m.
The smoothing radius of the linear filter (15) is rf =
1.440 × 10−3 m. To enforce a symmetric design we define

Fig. 6 Temperature contour plots with streamlines of the final designs for petal geometry optimization: option O1 (left), O2 (middle), O3 (right)
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Table 4 2D petal geometry
optimization results Design Initial design Option O1 - Option 02 - Option O3 -

Final design Final design Final design

TB [K] 2.77 2.68 2.43 2.29

Volume [m3] 2.22 × 10−5 3.81 × 10−5 3.93 × 10−5 3.92 × 10−5

Perimeter [m2] 2.44 × 10−2 3.14 × 10−2 3.14 × 10−2 3.12 × 10−2

Rayleigh 6.05 × 103 5.72 × 103 4.89 × 103 4.39 × 103

Grashof 1.02 × 104 9.68 × 103 8.27 × 103 7.44 × 103

Local Reynolds 1.00 × 101 7.78 4.92 1.68 × 101

the nodal level set functions at corresponding nodes by the
same optimization variables.

For the initial half-circle design the Rayleigh number is
Ra = 5, 900, the Grashof number Gr = 9, 900, and the
maximum local Reynolds number Remax = 9.0; for the
half-circle with inclusions the Rayleigh number is Ra =

6, 000, the Grashof number Gr = 10, 000, and the maxi-
mum local Reynolds number Remax = 9.6. The values are
indicative of a steady state flow for the initial designs.

Figure 10 shows temperature contour plots with stream-
lines of the optimized designs for the different initial
designs and design symmetry conditions. Values for the

Fig. 7 Diffusive (top) and advective (bottom) fluxes for petal geometry optimization: option O1 (left), O2 (middle), O3 (right)
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Fig. 8 Magnitude of fluid velocities for petal geometry optimization: option O1 (left), O2 (middle), O3 (right)

temperature TB , solid volume, and perimeter are given in
Tables 5 and 6. Independent of the initial design the opti-
mization process converges to equivalent solutions. Similar
to the petal problem studied above, the asymmetric design
yields the lowest objective temperature. Again, the asym-
metric design features substantially higher advective heat
transport due to large flow velocities above the solid struc-
ture; see Figs. 11 and 12.

5.3 2D transient topology optimization

Ensuring a steady-state flow for all designs throughout the
optimization process imposes severe limitations on the class
of optimization problems that can be considered. The pro-
posed optimization framework allows for problems where

the flow exhibits a transient response. To illustrate this capa-
bility, we consider a configuration similar to the one studied
previously, but we increase the magnitude of the external
heat flux by a factor 1,000 and the dimensions of the design
domain threefold. These modifications cause the flow to
exhibit dynamic instabilities. Starting from a design domain
of temperature T0 and the fluid being at rest, the transient
analysis is advanced in time until the temperature at point
B reaches a quasi-steady-state, i.e. the temporal variations
are much smaller than the average. Note the flow remains
unstable and does not converge to a steady-state. The objec-
tive is the temperature averaged over the last N12

t time
steps.

We parameterize the level set function by the XFEM
mesh and enforce a symmetric design by defining the nodal

Fig. 9 Temperature contour
plots with streamlines of initial
designs for 2D steady-state
topology optimization: circular
(left) and inclusions (right)
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Fig. 10 Temperature contour
plots with streamlines of the
final designs for 2D steady-state
topology optimization: circular
initial design (top), inclusion
initial design (bottom); free
geometry (left), symmetric
geometry (right)

level set functions at corresponding nodes by the same opti-
mization variables. The smoothing radius of the linear filter
(15) is rf = 1.44 × 10−3m. As in the previous topology
optimization study, the radius of the circle of solid phase
around point B is rBS = 10−3 m. The upper limits for the
volume and perimeter constraints also remain the same.

Table 5 2D steady-state topology optimization results for circular
initial design

Design Initial Final design Final design

design (symmetric) (non-symmetric)

TB [K] 2.71 2.26 2.16

Volume [m3] 3.87 × 10−5 3.93 × 10−5 3.93 × 10−5

Perimeter [m2] 1.56 × 10−2 3.14 × 10−2 3.14 × 10−2

Rayleigh 5.85 × 103 4.30 × 103 3.96 × 103

Grashof 9.90 × 103 7.27 × 103 6.70 × 103

Local Reynolds 8.99 5.27 1.85 × 101

The problem parameters are summarized in Table 7. Note
the large number of time steps needed to reach a quasi-
steady-state response at point B. This is due to the signif-
icantly different time scales dominating the flow field and
the thermal response in the solid. The time step size is driven
by the requirement to resolve the transient fluid response

Table 6 2D steady-state topology optimization results for initial
design with inclusions

Design Initial Final design Final design

design (symmetric) (non-symmetric)

TB [K] 2.75 2.26 2.16

Volume [m3] 2.84 × 10−5 3.93 × 10−5 3.92 × 10−5

Perimeter [m2] 2.52 × 10−2 3.14 × 10−2 3.14 × 10−2

Rayleigh 5.99 × 103 4.30 × 103 3.95 × 103

Grashof 1.01 × 104 7.27 × 103 6.69 × 103

Local Reynolds 9.55 5.27 1.83 × 101



www.manaraa.com

1062 P. Coffin, K. Maute

Fig. 11 Advective (bottom) and
diffusive (top) of non-symmetric
(left) and symmetric (right)
designs

Fig. 12 Magnitude of fluid
velocities of non-symmetric
(left) and symmetric (right)
designs
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Table 7 2D transient topology optimization parameters

Parameter Value

Domain height h = 0.090 m

Domain width w = 0.090 m

Number of elements 6400

Heat flux qB = 5.0 × 101W

Volume constraint cv = 3.93 × 10−5 m3

Perimeter constraint cpe = 3.14 × 10−2 m2

Time step size �t = 1.0 s

Total number of time steps N2
t = 2.5 × 103

Number of averaging time steps N12
t = 100

while the total simulation time needs to be sufficiently
large such that temperature field in the solid converges.
The appropriate time steps size, Δt , the total number of
time steps, N2

t , and the number of time steps for averaging
the objective temperature, N12

t , were determined through
numerical studies on the initial design.

To reduce the computational effort, we initialize the level
set field with the symmetric design found for the steady-
state case described previously. Snapshots of the tempera-
ture contours with stream lines of the initial and optimized
designs are shown in Fig. 13. For the both designs the flow
develops a long, thin column that oscillates horizontally as
the vortices at the top of the design domain move up and
down. While the initial and optimized designs have the same
topology, the transient optimum features a more bulbous
tip compared to straight fin obtained for the low Grashof
number, steady-state design.

0 500 1000 1500 2000 2500
0

50

100

150

200

Time (s)

T
B
 (

K
)

 

 

Initial Design
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Fig. 14 Temperature TB plotted over time for initial and final designs
of 2D unsteady topology optimization problem

The evolutions of the temperature at point B are shown
in Fig. 14 for the initial and final designs. For both con-
figurations, the temperature reaches a quasi-steady-state.
The average temperature at point B, the solid volume, the
perimeter and the non-dimensional numbers characterizing
the flow fields of the initial and final designs are given in
Table 8. Note that the Rayleigh and Grashof numbers for the
initial and optimized design are indicative of an unstable,
transient flow.

The transient optimum reduces the mean temperature by
7 % in comparison to the steady-state design which is opti-
mized at much lower Grashof number. Analyzing the design
optimized for the transient case at the configuration defined
in Section 5.2, which yields a steady-state flow, the objec-
tive temperature is TB = 2.26 K which is 0.2 % larger
than the one of the symmetric steady-state design. This
analysis illustrates the importance of optimizing the design

Fig. 13 Snapshot of
temperature contours with
streamlines for 2D transient
topology optimization

(a) Initial design (b) Final design

e
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Table 8 2D unsteady topology optimization results

Design Initial design Final design

mean(TB) [K] 1.74 × 102 1.61 × 102

Volume [m3] 3.83 × 10−5 3.89 × 10−5

Perimeter [m2] 3.01 × 10−2 3.46 × 10−2

Rayleigh 1.60 × 107 1.48 × 107

Grashof 2.70 × 107 2.50 × 107

Local Reynolds 2.70 × 103 2.69 × 103

for specific operating conditions and the resulting flow
regimes.

Accounting for the (potentially) transient behavior of nat-
ural convection problems in the design approach allows
for the consideration of a larger range of Rayleigh and
Grashof numbers and increases confidence in the accuracy
of the flow and thermal analysis. However, these advan-
tages come at significant additional computational cost. Due
to the serial nature of the time stepping schemes used in
both the forward and sensitivity analyses, the computational
cost per optimization iteration increases linearly with the
number of time steps required. Owing to the time scales
dominating the flow and thermal responses, a large num-
ber of time steps is needed to reach a quasi-steady-state
response in the solid phase. In addition, a rather fine mesh is
required to resolve spatially the flow. Here the XFEM model
yields about 25,000 degrees of freedom; the exact number
depends on the intersection configuration. The total time
for a forward and sensitivity analysis was approximately 2
hours, using MUMPS for solving the linear sub-problems
on a desktop computer with a six-core AMD Phenom II
1090T 3.2GHz processor and 8GB of RAM. For the total
of 150 optimization iterations, 12 days’ worth of computa-
tional time was required. To reduce the computational costs
more advanced time integration approaches could be incor-
porated. Alternative spatial discretization schemes, such as
finite volume or discontinuous Galerkin methods, may also
increase the computational efficiency.

5.4 3D steady-state topology optimization

Finally, we demonstrate that the proposed optimization
framework is also applicable to natural convection prob-
lems in three dimensions. Due the significant computa-
tional costs of solving transient problems, we limit this
study to a low-Grashof number configuration which guar-
antees steady-state solutions throughout the optimization
process.

The natural convection problem of Section 5.2 is
extended to three dimensions by rotating the design domain
about the center as shown in Fig. 4. The problem parame-
ters are given in Table 9. The radius of the sphere of solid
phase around point B is rBS = 2.5×10−3 m. The smoothing
radius of the linear filter (15) is rf = 1.069 × 10−3 m. We
enforce a double-symmetric design by defining the nodal
level set functions at corresponding nodes by the same opti-
mization variables. A layer of fluid material, 0.02 m thick, is
prescribed at the top surface of the design domain to prevent
the design from interacting with the boundary condition
applied there.

As in the previous studies we impose constraints on
the maximum solid volume and the perimeter. Numeri-
cal studies on the 3D configurations showed that small,
sub-element-size features may emerge, causing the opti-
mization process to stagnate. To suppress these features, we
additionally impose a constraint on the level set gradient
measure (16). The constraint limit is set initially to a rather
large value which does not prohibit geometric features from
merging. As the design converges the constraint values is
lowered to remove sub-element-size features. A constraint
of cg = 1.0 × 10−7 is prescribed for 300 optimization iter-
ations, then lowered to cg = 1.0 × 10−9 for another 300
iterations.

We start the optimization process with a cylindrical solid
phase of radius 0.003 m and height 0.005 m; a semi-sphere
is placed at the top of the cylinder. The flow field of the ini-
tial design is characterized by a Rayleigh number of Ra =
2000, a Grashof number of Gr = 3400, and a maximum
local Reynolds number of Remax = 5.0. These numbers are
similar to the ones of the configuration in Section 5.2 and
indicative of a steady-state flow.

The streamlines for the initial and optimized designs are
shown in Fig. 15. The performance and flow characteristics
are given in Table 10. The geometry of the 3D optimum
deviates noticeably from the solution of the 2D steady state
problem. While similar to the 2D solution the 3D design

Table 9 3D box topology optimization parameters

Parameter Value

Domain height h = 0.030 m

Domain width w = 0.030 m

Number of elements 51680

Heat flux qB = 3.333 × 10−4 W

Volume constraint cv = 5.24 × 10−7 m3

Perimeter constraint cpe = 4.7 × 10−4 m2

Gradient constraint cg = [1.0 × 10−7, 1.0 × 10−9] m
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Fig. 15 Results for 3D box
design problem

(a) Initial design (b) Final design

consists of a thin base, it splits into four branches in the top
half, shown in Fig. 15b. The 3D configuration appears to
promote thinner features necessitating some form of feature
size control; here implemented via a constraint on the level
set gradient measure.

This study demonstrates the applicability of the proposed
optimization framework to 3D natural convection problems.
However, we point out that the numerical and computa-
tionally complexity in solving the forward problem and the
overall optimization problem is significantly increased over
2D problems. This includes the numerical stability of the
XFEM formulation, in particular the treatment of the inter-
face conditions, as well as the complexity of solving large
nonlinear problems. The increased design freedom in 3D
allows the emergence of complex geometries for which it is
difficult to robustly compute flow solutions using uniformly
refined meshes that are not altered in the optimization
process.

Table 10 3D topology optimization results

Design Initial design Final design

TB [K] 1.59 1.18

Volume [m3] 1.89 × 10−7 1.46 × 10−7

Perimeter [m2] 1.47 × 10−4 3.81 × 10−4

Rayleigh 2.01 × 103 5.99 × 102

Grashof 3.41 × 103 1.01 × 103

Local Reynolds 4.97 2.54 × 10−1

6 Conclusions

This study presented an explicit LSM for optimizing the
geometry of natural convection dominated flows. Our
approach expands existing density methods onto tran-
sient problems. The energy transport is described by an
advection-diffusion model. In the fluid phase, the advective
velocity is modeled by the incompressible Navier-Stokes
equations and the Boussinesq approximation of the buoy-
ancy forces. In the solid phase, the advective velocity
vanishes. The method relies on a XFEM discretization of
the governing equations in the fluid and solid phase. The
interface conditions are enforced weakly using Nitsche’s
method. To consider flows exhibiting dynamic instabilities,
the flow and temperature fields are advanced in time by
an implicit Euler backward time integration scheme. The
design sensitivities of the steady-state and transient response
are computed by an adjoint approach.

The main characteristics of the proposed method were
studied with steady-state problems in 2D and 3D and a
2D transient problem. One of the main advantages of the
LSM approach is that it provides a crisp geometry descrip-
tion throughout the optimization process and that it does
not suffer from the presence of fictitious material in opti-
mized material distribution, as Alexandersen et al. (2014)
reported for density methods. Studies on a 2D steady-state
design problem illustrated that non-intuitive asymmetric
designs feature improved cooling performance compared to
optimized symmetric designs which converged to common
fin-type shapes.
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A study on a high-Grashof number configuration demon-
strated the applicability of the proposed methods to prob-
lems where the flow exhibits dynamic instabilities and does
not converge to a steady state. However, such problems are
stymied by large computational costs as a fine mesh and
small time steps are needed to resolve the transient flow and
a large number of time steps is required to reach a quasi-
steady-state thermal response in the solid. The applicability
of the proposed method to 3D problems was illustrated with
a low Grashof steady-state problem. For this problem, the
need to control the size of geometric features was observed.
To this end, a constraint on the gradients of the level set
field was imposed, along with setting appropriate lower and
upper bounds on the optimization variables. The applica-
tion of the proposed method to 3D problems is hampered by
large computational costs.

The numerical studies have demonstrated the applica-
bility of the proposed method to a broad range of natural
convection problems, including three-dimensional problems
and problems with unstable, transient flows. Future studies
should focus on reducing the computational costs, for exam-
ple, via adaptive meshing techniques and adaptive time step-
ping schemes. Furthermore, robust and efficient schemes
need to be developed to impose feature size constraints.
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